ResBos and RhicBos

 Q_T resummation for (un)polarized EW boson production

Pavel Nadolsky

Southern Methodist University

June 24, 2010

Objectives of the talk

An overview of physics in

- **ResBos:** Resummation for electroweak Bosons and their decays in **unpolarized** pp or $p\bar{p}$ collisions
- RhicBos = ResBos adapted to compute longitudinal single-spin and double-spin asymmetries in **leptonic** decays of γ^* , W, Z in pp collisions
- Single-spin asymmetries in hadronic decays of W bosons a useful measurement complementary to the leptonic mode

Interruptions and questions are welcome!

Today's focus is on...

unpolarized parton distributions:

 $f_{a/p}(x,Q) \equiv f_{a/p}^{+/+}(x,Q) + f_{a/p}^{-/+}(x,Q)$

longitudinally polarized parton distributions:

- $\Delta f_{a/p}(x,Q) \equiv f_{a/p}^{+/+}(x,Q) f_{a/p}^{-/+}(x,Q)$
- unpolarized cross sections:

 $\sigma = \frac{1}{2} \left[\sigma(p^{\rightarrow}p) + \sigma(p^{\leftarrow}p) \right]$

single-spin cross sections $(\neq 0 \text{ if } V - A \text{ interaction})$:

- $\Delta_L \sigma = \frac{1}{2} \left[\sigma(p^{\rightarrow} p) \sigma(p^{\leftarrow} p) \right]$
- single-spin asymmetry as a function of W boson rapidity

 $A_L(y) \equiv rac{d\Delta_L \sigma/dy}{d\sigma/dy}$

Two classes of subprocesses with \boldsymbol{W} bosons

1: Resonant (s-channel) W boson production

- dominant parity-violating process at $Q \approx M_W$
- Leptonic decays: ${\sf Br}(W \to e \nu_e) \approx 10.8\%$ RhicBos
- Hadronic decays: $Br(W \rightarrow hadrons) \approx 67\%$

2: Non-resonant scattering into a dijet final state, mediated by γ^* , W, Z, and g, and interference terms

Related publications

On-shell W boson production

- 1. C. Bourrely, J. Soffer, PLB 314, 132 (1993); Nucl. Phys. B423, 329 (1994)
- 2. A. Weber, Nucl. Phys. B 403, 545 (1993)
- 3. P. Nadolsky, hep-ph/9503419
- 4. T. Gehrmann, Nucl. Phys. B534, 21(1998)
- 5. M. Gluck, A. Hartl, and E. Reya, Eur. Phys. J. C19, 77 (2001)

Leptonic decay mode

- 1. B. Kamal, Phys. Rev. D57, 6663 (1998)
- 2. P. Nadolsky and C.-P. Yuan, Nucl. Phys. B666, 3 and 31 (2003)

Dijet mode

- 1. H. Haber and G. Kane, Nucl. Phys. B146,109 (1978)
- 2. F. Paige, T. L. Trueman, T. Tudron, Phys. Rev. D 19, 935 (1979)
- 3. C. Bourrely, J. P. Guillet, and J. Soffer, Nucl. Phys. B361, 72 (1991)
- S. Arnold, A. Metz, V. Vogelsang, arXiv:0807.3688; S. Arnold, K. Goeke, A. Metz, P. Schweitzer, W. Vogelsang, Eur.Phys.J.ST 162 (2008)

Leptonic decays

pp and $par{p}$ colliders: accessible momentum fractions

- W^{\pm} at RHIC: access to $x \sim 0.1$ in the experimentally preferred region (|y| < 2)
 - valence PDFs at $x \gtrsim 0.1$
 - sea PDFs at $3 \cdot 10^{-2} \lesssim x \lesssim 0.1$

$$x_{a,b} \equiv \frac{M_V}{\sqrt{s}} e^{\pm y}$$

Unpolarized cross sections and their PDF errors

 $\mathcal{O}(\alpha_s)$ (=NLO), for 1 lepton generation; CTEQ6 PDFs

Boson	<u>σ</u> (pb)
W^+	124 ± 9
W^-	41 ± 4
Z^0	10.0 ± 0.8

 $\sigma(W^+)$: $\sigma(W^-)$: $\sigma(Z) \approx 1$: 0.33: 0.08 (1:0.33:0.26 in hadronic decays)

 W^+ dominates if $W^+/W^-/Z$ contributions are not separated

W^\pm bosons as ideal polarimeters

$$\begin{vmatrix} \Rightarrow & \\ \Rightarrow & \\ & \sim u_{-/+}(x_a)\overline{d}(x_b) \end{vmatrix}$$

$$\begin{vmatrix} \Rightarrow & \\ & \sim u_{-/-}(x_a)\overline{d}(x_b) \end{vmatrix}$$

At Born level:

$$\frac{d\Delta_L \sigma(pp \xrightarrow{W^+} \ell^+ \nu_\ell X)}{dx_a dx_b d\cos\theta d\varphi} \propto$$

$$-\Delta u(x_a) \bar{d}(x_b) (1 + \cos\theta)^2 +$$

$$+\Delta \bar{d}(x_a) u(x_b) (1 - \cos\theta)^2$$

Spin asymmetries in W^{\pm} production are sensitive to the flavor structure of the polarized quark sea

Signature of W boson events: high- p_T charged leptons and E_T

Leading-order $A_L(y)$

$$A_{L}^{W^{+}}(y) = \frac{-\Delta u(x_{a})\bar{d}(x_{b}) + \Delta \bar{d}(x_{a})u(x_{b})}{u(x_{a})\bar{d}(x_{b}) + \bar{d}(x_{a})u(x_{b})}$$
$$= \begin{cases} -\Delta u(x_{a})/u(x_{a}), x_{a} \to 1\\ \Delta \bar{d}(x_{a})/\bar{d}(x_{a}), x_{b} \to 1 \end{cases}$$

$$A_{L}^{W^{-}}(y) = \frac{-\Delta d(x_{a})\bar{u}(x_{b}) + \Delta \bar{u}(x_{a})d(x_{b})}{d(x_{a})\bar{u}(x_{b}) + \bar{u}(x_{a})d(x_{b})}$$
$$= \begin{cases} -\Delta d(x_{a})/d(x_{a}), x_{a} \to 1\\ \Delta \bar{u}(x_{a})/\bar{u}(x_{a}), x_{b} \to 1 \end{cases}$$

guaranteed large asymmetries at $x \rightarrow 1$

Fully differential resummed NLO cross sections (RhicBos - P. N., C.-P. Yuan, 2003)

- lacktriangleq A fast Monte-Carlo integrator implementing q_T resummation at NNLL/NLO
- effects of boson's width and decay, electroweak corrections
- unpolarized, single-spin, and double-spin cross sections
- lepton distributions for realistic acceptance
- available at MSU Q_T resummation portal (http://hep.pa.msu.edu/resum/), together with theory introduction, bibliography, etc.

QCD factorization as a function of q_T

(according to Collins, Soper, and Sterman approach)

Small- q_T term $\Lambda_{QCD}^2 \ll q_T^2 \ll Q^2$

Large- q_T term

Overlap term

- \mathbf{k}_T -dependent PDFs $\mathcal{P}(x, \vec{k}_T)$
- Sudakov function $S(x, \vec{k}_T)$
- □ actually, their impact parameter (b) space transforms
- Collinear PDFs $f_a(x, \mu)$
- hard matrix elements
- ${\cal H}$ of order N

■ Truncated perturbative expansion

$$\sum_{k=0}^{N} \alpha_s^k \sum_{m=0}^{2k-1} c_{km} \ln^m \left(\frac{q_T^2}{Q^2} \right)$$

Resummed cross section for $AB \rightarrow VX$

$$\frac{d\sigma_{AB\to VX}}{dQ^2 dy dq_T^2} = \sum_{a,b=g,\stackrel{(-)}{u},\stackrel{(-)}{d},\dots} \int \frac{d^2b}{(2\pi)^2} e^{-i\vec{q}_T \cdot \vec{b}} \widetilde{W}_{ab}(b,Q,x_A,x_B) + Y(q_T,Q,x_A,x_B)$$

$$\widetilde{W}_{ab}(b, Q, x_A, x_B) = |\mathcal{H}_{ab}|^2 e^{-\mathcal{S}(b, Q)} \overline{\mathcal{P}}_a(x_A, b) \overline{\mathcal{P}}_b(x_B, b)$$

S is the soft (Sudakov) function:

$$\mathcal{S}(b,Q) = \int_{1/b^2}^{Q^2} rac{dar{\mu}^2}{ar{\mu}^2} \left[\mathcal{A}(lpha_s(ar{\mu})) \ln rac{ar{\mu}^2}{Q^2} + \mathcal{B}(lpha_s(ar{\mu}))
ight]$$

 $\overline{\mathcal{P}}_a(x,b)$ are b-dependent PDF's; if $b^2 \ll Q^{-2}$,

$$\overline{\mathcal{P}}_a(x,b) = \sum_c \left[\mathcal{C}_{a/c} \otimes f_c \right] (x,b,\mu_F \sim \frac{1}{b})$$

Y is the difference of the finite-order and overlap (asymptotic) terms

- Resummation module for W and Z production slow (Legacy Ladinsky, Yuan, 1993; Brock, Landry, P. N., Yuan, 2002)
- Monte-Carlo integration module for W and Z decay and matching of small- q_T and large- q_T terms fast (ResBos Balazs, Yuan, 1997)

Perturbative QCD contributions

- Finite-order Y term (large q_T):
 - NNLO (= $\mathcal{O}(\alpha_s^2)$) boson-level cross section (Arnold, Reno, 1989; Arnold, Kauffman, 1991)
 - **parton-lepton** spin correlations up to NLO (= $\mathcal{O}(\alpha_s)$)
- Resummed W term (small q_T)
 - NNLL expressions for S(b,Q) and $\overline{P}(x,b)$ $(A^{(3)},B^{(2)},C^{(1)})$ coefficients)
 - ► Two representations for the hard vertex function H (Collins, Soper, Sterman; Catani, de Florian, Grazzini)
 - produce similar predictions for vector boson production
 - $\overline{\mathcal{P}}(x,b)$ for c and b quark scattering in general-mass (ACOT- χ) scheme (Berge, P. N., Olness, 2006)

Electroweak contributions at all Q_T

- W, Z width in effective Born approximation
- ResBos-A: + final-state QED radiation in W and Z production (Cao, Yuan)
 - both W term (2004) and Y term (near completion)
- updated $\gamma^* Z$ interference

Nonperturbative model at $b \gtrsim 1 \text{ GeV}^{-1}$:

- revised " b_* " approximation + a power-suppressed term $\propto b^2$ (Collins, Soper, Sterman, 1985; Konychev, P. N., 2005)
- replaces BLNY model (Brock, Landry, P.N., Yuan) used in Tevatron Run-2 M_W measurements

can approximate a variety of nonperturbative models (BLNY, Qui, Zhang; Kulesza, Sterman, Voqelsang)

Gaussian
$$\mathcal{F}_{NP}(b,Q) = b^2 [0.20 + 0.19 \ln(Q/3.2) - 0.026 \ln(100x_Ax_B)]$$

- linear In Q dependence, in quantitative agreement with SIDIS q_T fit and infrared renormalon estimates (Tafat)
- \blacksquare small \sqrt{s} dependence
- no tangible flavor dependence
- supports dominance of soft contributions in $\mathcal{F}_{NP}(b,Q)$
- \blacksquare applies at $x \gtrsim 10^{-2}$

PDF reweighting and ROOT ntuple output

If the central PDF cross section σ_0 and PDF uncertainty $\Delta \sigma^2$ are estimated by generating \overline{N} Monte-Carlo integrator events for each error PDF $f^{(i)}(x,\mu)$ (i=0,2N), their MC estimates are

$$\overline{\sigma}_0 \sim \sigma_0 + rac{c}{\overline{N}^{1/2}}$$
 and $\overline{\Delta \sigma^2} \sim \Delta \sigma^2 + rac{c'N}{\overline{N}^{1/2}}$

- a large factor of $N \sim 22$ in the MC error for $\overline{\Delta \sigma^2}$ due to randomness of event generation for each PDF!
- need N^2 more MC events to evaluate σ^2

PDF reweighting and ROOT ntuple output

■ PDF reweighting generates the same sequence of events to compute each of 2N cross sections

$$\blacktriangleright \ \overline{\Delta \sigma^2} \approx \Delta \sigma^2 + \mathcal{O}(\overline{N}^{-1})$$

In multi-loop calculations, PDF reweighting saves CPU time drastically by reducing slow computations of hard-scattering matrix elements

FROOT: a theorist-friendly interface for Monte-Carlo reweighting

- Written in C, can be linked to standalone FORTRAN/C/C++ programs
- Simple 170 lines of the code
- Writes the output directly into a ROOT ntuple; no need in intermediate PAW ntuples
- Flexible; new columns (branches) with PDF weights or events can be added into an existing ntuple
- Kinematical cuts, selection conditions can be imposed a posteriori in interactive or batch ROOT sessions
- implemented in ResBos

http://www.physics.smu.edu/~nadolsky/projects.html

FROOT: a theorist-friendly interface for Monte-Carlo reweighting

RHIC-specific challenges for $W \to \ell \nu$

- lacksquare $\mathcal{O}(lpha_{EW}^2)$ process at $x\sim 0.1$
 - relatively small cross sections
 - requires substantial luminosity ($\mathcal{L} = 100 400 \text{ pb}^{-1}$)
- Neutrino 4-momentum is unknown
 - $ightharpoonup Q, y, q_T$, missing E_T are unknown
 - ▶ PDFs must be deduced from $d^2\sigma/(dp_{Te}dy_e)$ within PHENIX/STAR acceptance, accounting for spin correlations in W decay
 - can be done using available NLO tools (RhicBos, etc.)

$d\sigma/dy_e$ for charged lepton rapidity y_e

At Born level:

$$\begin{split} \frac{d\Delta_L \sigma(W^{\pm}X)}{dy_e} &= \frac{2\pi\sigma_0}{S} \int_{y_{\min}(p_{Te}^{\min})}^{y_{\max}(p_{Te}^{\min})} dy \sin^2 \theta_e \\ &\times \bigg\{ -\Delta q(x_a) \bar{q}'(x_b) (1\mp\cos\theta_e)^2 + \Delta \bar{q}'(x_a) q(x_b) (1\pm\cos\theta_e)^2 \bigg\}, \end{split}$$

with
$$\cos \theta_e = \tanh(y_e - y)$$

 $W^+: q = u, \bar{q}' = \bar{d}$
 $W^-: q = d, \bar{q}' = \bar{u}$

$d\sigma/dy_e$ for charged lepton rapidity y_e

- Positrons from $W^+ \rightarrow e^+\nu_e$ tend to scatter backwards in the W rest frame \Rightarrow
 - sensitivity to $\Delta u(x)$ at $y_e \lesssim 0$, $\Delta \bar{d}(x)$ at $y_e \approx 0$ (at variance with common intuition)
 - manageable, but a bit contrived

Dijet decays

E. Berger and P. Nadolsky, Phys. Rev. D78, 114010 (2008)

Resonant W boson contribution to $pp \rightarrow \mathbf{jet} + \mathbf{jet} + X$

- The hadronic mode is complementary to the leptonic mode:
 - W boson's virtuality Q and rapidity y can be established approximately by equating them to the dijet invariant mass and rapidity
 - Contributions mediated by W^+ bosons dominate over W^- and Z^0 contributions; the PDF dependence of $d\sigma/dy$ closely resembles that in W^+ boson production
 - No smearing of PDF dependence by spin correlations in W decays (especially relevant for $\Delta \bar{d}(x,Q)$)

Hadronic mode at RHIC and other colliders

Observation of the hadronic mode at RHIC is much easier than at the Tevatron/LHC, slightly harder than at SppS

- lacksquare relatively low backgrounds, especially for **parity-violating** A_L
- largest QCD backgrounds are parity-conserving; can be subtracted using a side-band technique
- low Q resolution is sufficient (not an electroweak precision measurement as at the Tevatron)

$W o {\sf hadrons} \ {\sf at SppS} \ {}_{\scriptsize (PLB186,\ 452\ (1987))}$

- lacktriangledown par p o WX, $\sqrt s = 630$ GeV, $\mathcal L = 0.73$ pb $^{-1}$; $x \sim 0.13$
- 3σ signal in the dijet mass (m=Q) distribution
- background/signal≥ 20 (RHIC: ≥ 30; Tevatron: ≥ 570)
- background is smooth
- can be interpolated from the sidebands in Q and other variables
- Mass resolution $\delta m = 8 9$ GeV
- \blacksquare W and Z peaks are not separated

Calculation of the dijet cross sections

- Compute $pp \to \text{jet} + \text{jet} + X$, approximated by $2 \to 2$ exchanges of V = g, $\gamma^*.W^\pm,Z^0$ in the s,t, and u channels; orders α_{EW}^2 , $\alpha_s\alpha_{EW}$, and α_s^2
- Cross sections are fully differential in the momenta of two jets; allow acceptance cuts
- MadGraph for generation of cross sections and MadEvent for phase-space Monte-Carlo integration. Programs operate with helicity-dependent scattering amplitudes, but typically the amplitudes are summed over all helicity combinations to produce spin-averaged cross sections.
 - modified MadEvent to evaluate single-spin cross sections (available upon request)

Calculation of the dijet cross sections

- Include contributions from u, d, s, c, and g
- Factorization and renormalization scales: $\mu_F = \mu_R = Q$
- Impose constraints $p_{Tj}>25$ GeV and $|y_j|<2$ to reproduce approximately the acceptance of STAR

Unpolarized dijet mass (Q) distributions

- Continuous event distribution from QCD and electromagnetic scattering (g and γ^*) dominates
- "Signal region" = region in which Q is close to M_W (e.g., $70 \le Q \le 90 100$ GeV)
- Even in this region, the spin-averaged *W* and *Z* contribution is no more than a few percent of the full event rate

Unpolarized cross section: flavor separation

- $\blacksquare q$ stands for both quarks and antiquarks
- $\blacksquare qq (qq')$ stands for scattering of the same (different) quark flavors
- All PV signal has two quark-initiated jets (qq')
- 75% of the background is from $qg \rightarrow qg$ and $gg \rightarrow gg$ with 1 or 2 gluon-initiated jets

Unpolarized cross section: flavor separation

- $\Delta y \equiv y_1 y_2$ probes dependence on the decay polar angle θ ; $\Delta y = 2 \tanh^{-1}(\cos \theta)$ at LO
- $\blacksquare d\sigma/d\cos\theta$ and $d\sigma/d\Delta y$ of the qg, gg backgrounds are different from those of the qg' signal

Quark-like jets look differently from gluon-like jets

LEP and Tevatron: typical g-like jets have a larger multiplicity and broader jet shapes than u,d,s-like jets

- Similar differences must exist at RHIC
- 75% of the background events contain a g-like jet; $A_L(y)$ is enhanced by a large factor by excluding such events

$$\frac{\langle n_{charged} \rangle_{g \text{ jet}}}{\langle n_{charged} \rangle_{u.d.s \text{ jet}}} = 1.51 \pm 0.04$$

Further details: B. Gary & N. Varelas at 2009 CTEQ Summer school (http://www.phys.psu.edu/~cteq/schools/summer09/), and refs therein

Spin-dependent dijet production

$$A_L(y) \equiv rac{d\Delta_L \sigma/dy}{d\sigma/dy} = rac{N}{D}$$

- Parity violation needed to obtain a non-zero N arises solely from qq contributions with intermediate W and Z bosons
- The magnitude of A_L for 70 < Q < 90 GeV may be enhanced by applying a "side-band background subtraction" to D
- In this calculation, we approximate the "subtracted" D by the $\mathcal{O}(\alpha_s \alpha_{EW} + \alpha_{EW}^2)$ unpolarized cross section

Spin-dependent dijet production

No subtraction

- D is dominated by large $\mathcal{O}(\alpha_s^2)$ terms
- \blacksquare A_L is small
- lacktriangle Different $\Delta f_{a/p}$ cannot be discriminated

Error bars are projected statistical uncertainties for $\mathcal{L}=160~\mathrm{pb}^{-1}$, $P_{beam}=0.7$

Spin-dependent dijet production

With subtraction

- \bigcirc $\mathcal{O}(\alpha_s^2)$ terms, other non-resonant contributions are measured at Q < 70 GeV and Q > 90 GeV; interpolated and subtracted from D at 70 < Q < 90 GeV
- \blacksquare A_L is enhanced; statistical errors remain reasonable
- lacksquare Sensitivity to $\Delta f_{a/p}$ is improved

Error bars are projected statistical uncertainties for $\mathcal{L} = 160 \text{ pb}^{-1}$, $P_{beam} = 0.7$

Sensitivity of A_L to $\Delta \bar{q}$

 A_L for production of jet pairs, after side-band subtraction

For y<0, pronounced variations in A_L due to the variation of $\Delta \bar{d}(x,Q)$

The black curve corresponds to the DNS2005 NLO PDF set 1. The pairs of other curves contain the ranges of A_L obtained if $\Delta q \equiv \int_0^1 dx \, \Delta q(x, 3.16 \, \text{GeV})$ is varied within $\Delta \chi^2/\chi^2_{min} < 2\%$

Discussion

Data-driven search for resonant $W \rightarrow \text{jet} + \text{jet}$ contributions

 $A_L(y)$ is most accessible in the signal region:

$$Q=M_W\pm 10-$$
 15 GeV, $p_{Tj}\gtrsim$ 25 GeV, $|y_{1j}-y_{2j}|\lesssim 1$

The measurement can be based on the following strategy:

- Discard events with gluon-like jets (wide, large multiplicity) to the best of one's ability
- Precisely measure the smooth background outside of the signal region
- Use this measurement to predict and subtract the background inside the signal region
- **4.** Look for a large $A_L(y)$ at y > +1 (driven by a large $\Delta u(x)/u(x)$ at $x \to 1$)
- **5.** Measure moderate $A_L(y)$ at y < -1 to constrain $\Delta \bar{d}(x)/\bar{d}(x)$ at x < 0.1

Next-to-leading order

- A more precise calculation must include NLO QCD contributions. These increase predicted rates and stabilize hard-scale (μ_F) dependence.
- **Backgrounds** in the denominator of $A_L(y)$ will be larger
- Comparably large enhancements in the numerator due to $\alpha_s^2 \alpha_W$ terms (Moretti, Nolten, Ross, Phys. Lett. B643, 86 (2006))
- lacktriangle Predicted magnitude of A_L could remain largely unaffected
- lacksquare Could lead to a decrease in δA_L , since $\delta A_L \propto 1/\sqrt{N_{unp}}$

Backup slides

Flavor composition of QCD-EW interference in dijet decays

- Large resonant $u\bar{d}$, $d\bar{u}$ contributions cancel when integrated over a Q range centered around M_W
- Smaller non-resonant *uu*, *dd*, *ud* contributions survive

Parity-violating spin asymmetries in polarized pp scattering

with hadronic final states

Arnold, Metz, Vogelsang, arXiv:0807.3688; Arnold, Goeke, Metz, Schweitzer, Vogelsang, Eur.Phys.J.ST 162 (2008)

- Focus on 1 jet-inclusive $\frac{d^2\sigma}{dy_jdp_{Tj}}$ (inclusive in Q, y_{2j}, y)
 - our **2 jet-inclusive** calculation imposes lower cuts both on Q and p_{Tj} (better background rejection)
- Estimates are made without side-band subtraction \Rightarrow $|A_L| < 2 3\%$

Parity-violating spin asymmetries in polarized pp scattering

with hadronic final states

Arnold, Metz, Vogelsang, arXiv:0807.3688; Arnold, Goeke, Metz, Schweitzer, Vogelsang, Eur.Phys.J.ST 162 (2008)

Backgrounds can be suppressed by requiring a final-state c quark

- $oldsymbol{\Theta}$ A_L increases
- © event rate is reduced by experimental charm tagging (not included here)
- (?) net effect needs further study

Our MadEvent calculation allows selection of final-state c quarks or other particles (leading pions, etc.) to suppress the QCD background

$W \rightarrow$ hadrons at the Tevatron

(J. Pumplin, PRD45, 806 (1992); U. Baur et al., hep-ph/0005226)

- lacktriangledown par p o WX , $\sqrt s = 1.8$ TeV, $x \sim 0.04$
- background/signal≈ 570
- After an angular cut in the W rest frame: background/signal \approx 255 $QQ/W \approx 22, QG/W \approx 101, GG/W \approx 132$
- mass resolution $\delta M_{jj} \geq 0.5 \text{ GeV}$
- of no use for M_W measurement, unless the gluon background is drastically reduced

Distributions in Δy - difference of jet rapidities

Full $\mathcal{O}(\alpha_s^2 + \alpha_s \alpha_{EW} + \alpha_{EW}^2)$ cross section is peaked strongly at large $|\Delta y|$. The $\mathcal{O}(\alpha_{EW}^2)$ and $\mathcal{O}(\alpha_s \alpha_{EW} + \alpha_{EW}^2)$ cross sections have flatter Δy dependence

Leptonic decay mode

 $pp
ightarrow (W
ightarrow \ell
u) X$ at $\sqrt{s} = 500$ GeV

- "Theoretical clean" process
 - lacktriangleright mostly $uar d o W^+$ or $dar u o W^-$; small contributions from s,c,b,g
 - relatively simple QCD and EW higher-order contributions
- Flavor sensitivity through the CKM matrix
- good sensitivity to **quark sea** at scales of order M_W (pp scattering)
- **single-spin** measurements **cleanly** constrain Δq , $\Delta \bar{q}$
 - complications of low-Q (SI)DIS are avoided

Quark flavor composition, unpolarized

 W^+ and W^- contributions

- Figure identifies contributions proportional to $u(x_a)$, $\bar{u}(x_a)$, $d(x_a)$, and $\bar{d}(x_a)$
- The combined W^{\pm} cross section is dominated by
 - ▶ $u(x_a)$ contributions at y > 0
 - $ightharpoonup ar{d}(x_a)$ contributions at y<0
- as in resonant W^+ production

Quark flavor composition, unpolarized

 W^+ and W^- contributions

 $\mathcal{O}(\alpha_s \alpha_{EW} + \alpha_{EW}^2)$ contributions

Sensitivity to \bar{d} at y < 0 is preserved despite QCD-EW interference, after integration over 70 < Q < 90 GeV